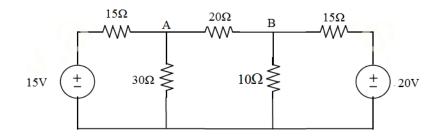


SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

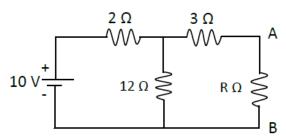

Subject with Code: Basic Electrical Engineering (18EE0239)

Course & Branch: B.Tech-(ECE&CSE)

Year & Sem: I-B.Tech& II-Sem **Regulation:** R18

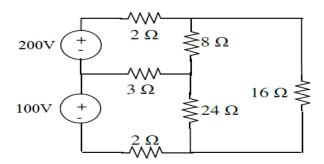
UNIT -I **DC CIRCUITS**

1. (a)State and explain Kirchhoff's laws? (b)Determine the current in branch A-B by using KVL [L1][4M][L4][6M]



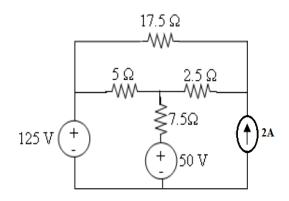
2. a) State and explain Norton's theorem?

[L1] [5M]


b) Draw the Norton's equivalent circuit for the circuit shown in figure.

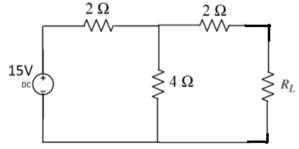
[L4] [5M]

3. Determine the mesh currents for the circuit shown below.


[L4] [10M]

4. Use nodal analysis to find the node voltages for the below circuit.

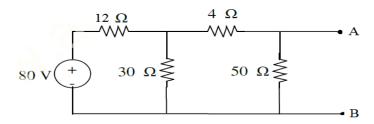
[L4] [10M]


BEE

5. a) State and Explain Thevenin's Theorem

[L1] [5M]

b) Find load current by using Thevenin's theorem for the following circuit where $R_L=3\Omega$ [L4] [6M]

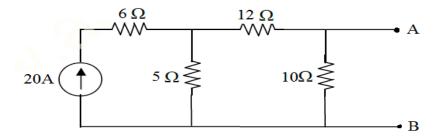


6 a)Derive the time response of RL circuit

[L2] [5M]

b)find the Thevenin's equivalent for the circuit shown below

[L4] [5M]

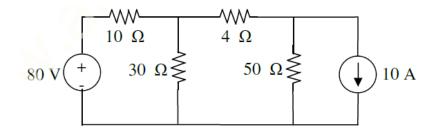


7. a) Derive the time response of RC circuit

[L2] [5M]

b)find the Norton's equivalent for the circuit shown below.

[L4] [5M]

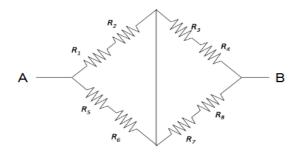


8.a) State and explain Superposition theorem?

[L1] [4M]

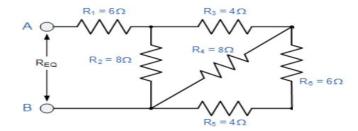
b) Verify Superposition theorem for 4Ω resistor for the following circuit.

[L4] [6M]

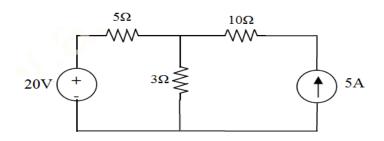

9. a) explain the circuit elements R,L &C.

[L1] [4M]

b) i) Find the equivalent resistance between AB for the circuit shown bellow.


[L3] [3M]

$$R_1$$
=4 Ω , R_2 =2 Ω , R_3 =8 Ω , R_4 =1 Ω , R_5 =12 Ω , R_6 =3 Ω , R_7 =10 Ω & R_8 =5 Ω



ii) Find the equivalent resistance for the circuit shown below.

[L3] [3M]

10. State and Expalin the Super position theorem. And By using superposition theorem find the current flowing through the 3 ohm resister. [L4] [10M]

BEE

11.(a) What is Circuit and Network?

[L1][2M]

(b) Define Inductance?

[L1][2M]

(c) Define Capacitor and represent symolically?

[L1][2M]

(d) State Ohm's law and write its expression?

- [L1][2M][L1][2M]
- (e) A electric kettle takes a current of 12.5A at 240V. What is the resistance of heating Element?

UNIT-II

AC CIRCUITS

1. (a) Derive an expression for RMS values of sine wave form.

[L2][6M]

(b) An alternating current is expressed as $I = 14.14 \sin 314t$. Determine.

[L4][4M]

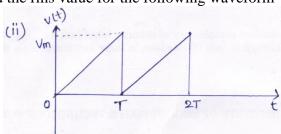
- i. Maximum current ii. rms current iii. Frequency
- iv. Instantaneous current when t = 0.02msec.
- 2. Derive an expression for the current and impedance for a series RL and RC circuit excited by a sinusoidally alternating voltage. Draw the phasor diagrams. [L3][10M]
- 3. a) Define Admittance and impedance

[L1][4M]

- b) The impedances of series circuit are Z1=(6+i8) ohms and Z2=(8-i6) ohms. If the applied voltage is 120V, find total impedance, current and power factor. Draw the phasor diagram.[L2] [6M]
- 4. (a)Explain parallal RL and RC circuits with phasor diagrams.

[L3][6M]

- (b) A 120V AC circuit contain 10 Ω resistance and 30 Ω inductive reactance in series. What is average power of this circuit. [L2][4M]
- 5. (a) Define power factor, apparent power, active power and reactive power

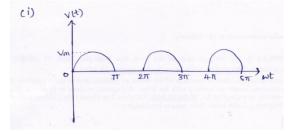

[L1] [4M]

- (b) Z1 and Z2 are in parallel where currents corresponding impedances are $I_1 = 50 \perp 10$ and I_{2} = $20 \bot 30$. If the applied voltage is $100 \bot 15V$, find true power, reactive power and apparent power in each branch. [L2] [6M]
- 6. a) Derive an expression for the voltage and impedance for a series RLC circuit excited by a sinusoidally alternating voltage.
 - (b) A series circuit consisting of a 10Ω resistor, a 100μ F capacitor and a 10 mH inductor is driven by a 50 Hz a.c. voltage source of maximum value 100 volts. Calculate the equivalent impedance, Current in the circuit and the phase angle. [L2] [5M]
- 7. (a) Derive the voltage and current relations in three phase balanced circuits for delta connection.

[L2] [6M]

(b) Find the rms value for the following waveform

[L3] [4M]



8. (a) Explain the phasor relation for R, L & C elements.

[L1][4M]

- (b) A resistor of 50Ω and inductance of 100mH are connected in series across 200V, 50Hz supply. Determine the following [L2] [6M]
- (i) Impedance
- (ii) current flowing through the circuit
- (iii) power factor
- 9. (a) Derive the voltage and current relations in three phase balanced circuits for star connection. [L2] [10M]
 - (b) Find the rms value for the following waveforms

[L3] [4M]

- 10. (a) Explain resonance for series RLC circuit and derive the equation for resonant frequency. [L2] [5M]
 - (b) A series RLC circuit of R=50 ohms, L= j25 ohms. Determine the value of capacitive reactance and impedance at resonance [L2] [5M]
- 11. (a) Define Form Factor and Peak Factor?

[L1][2M]

(b) Define vector and phasor?

[L1][2M]

(c) Define resonance?

[L1][2M]

(d) Draw Star and Delta Connections of Three Phase circuit?

[L1][2M]

(e) Write Expressions for Voltages and Current in Three Phase balanced system?

[L1][2M]

Unit-III

TRANSFORMERS

- 1.(a) Explain the briefly the construction and working of a single phase transformer [L2][6M]
 - (b) A 200 KVA, 1100/415V, 50Hz single phase transformer has 80 turns of secondary.

Calculate the primary number of turns.

[L2][4M]

2.(a)Write a short notes on regulation and Efficiency of the transformer.

[L1][5M]

(b) The efficiency of a 200 KVA,1-Φ transformer is 98.7% when operating at full-load,0.8 p.f lagging, the iron loss in the transformer is 200 W. Calculate: (i)Full load copper loss

(ii) Half load copper loss.

[L3][5M]

3. (a) Explain the various losses in a transformer.

[L1][5M]

BEE

(b) a single phase transformer with a ratio of 440/110V takes a no load current of 5A at 0.2 p.f. lagging. If the secondary supplies a current of 120A at a p.f. of 0.8 lagging find the current taken by the primary. [L3] [5M]

4. (a) Explain BH characteristics.

[L1] [5M]

- (b) A 100KVA transformer has primary and secondary turns of 400 and 100 respectively. Its primary and secondary resistance and reactance are: $R_1=0.3\Omega$, $R_2=0.015\Omega$, $X_1=1.1\Omega$, $X_2=0.055\Omega$, supply voltage is 2400V.Calculate equivalent resistance and reactance on the primary side. [L2] [5M]
- 5. (a) Explain about magnetic materials.

[L1] [4M]

- (b) A 1-Φ,50 HZ transformer has 80 turns on the primary winding and 400 turns on the secondary winding. The net cross sectional area of the core is 200 cm². If the primary winding is connected to a 240v,50 HZ supply, determine (i)The emf induced in the secondary winding.
- (ii) The maximum value of the flux density in the core.

[L2] [6M]

6.(a) Explain about ideal transformer and derive the EMF equation of the transformer.

[L2] [6M]

(b) A 10KVA, 2200/220V, 50Hz single phase transformer has a net core area of 300cm² and a maximum flux density of 1.5wb/m². Calculate the number of turns in primary and secondary winding.

[L2] [6M]

7. Explain the practical transformer on load and draw the phasor diagrams.

[L2][10M]

8. Obtain the equivalent circuit of single phase transformer referred to primary and secondary. [L2][10M]

9. What is meant by auto transformer? What are the advantages of Auto transformer when compared to two winding transformer? [L1] [10M]

10. What are three phase transformer connections and explain it?

[L2][10M]

11. (a) Define Transformer?

[L1][2M]

(b) Write Transformation ratio?

[L1][2M]

(c) Why Transformer doesn't work on DC?

[L1][2M]

(d) Why Transformer rating will be in kVA?

[L1][2M]

(e) What is the condition for maximum efficiency in a Transformer and

[L1][2M]

expression for load current at maximum efficiency?

BEE Page 6

Unit-IV

ELECTRICAL MACHINES

1.	What is rotating magnetic field? Explain in brief?	[L2][10M]
2.	Explain the construction of three phase induction motor?	[L1][10M]
3.	Sketch and explain the torque slip characteristics of 3 phase induction motor?	[L2][10M]
4.	Explain the construction of three phase alternator?	[L1][10M]
5.	Explain the construction single phase induction motor	[L1][10M]
6.	Explain the working principle of single phase induction motor	[L2][10M]
7.	Explain the construction of DC motor?	[L1][10M]
8.	Sketch and explain the torque speed characteristics of DC motor?	[L2][10M]
9.	Explain the various method of speed control of separately excited DC motor?	[L2][10M]
10.	Explain the working principle of synchronous generator?	[L2][10M]
11.	. (a) Define Torque and slip?	[L1][2M]
	(b) Why is an induction motor called a rotating transformer?justify	[L1][2M]
	(c) why single phase induction motor is not self starting?	[L1][2M]
	(d) What is commutation & commutator?	[L1][2M]
	(e) Define Alternator ?	[L1][2M]

<u>UNIT -V</u> ELECTRICAL INSTALLATIONS

1. Explain different types of wiring system.	[L2][10M]	
2. Explain the following electrical wiring system with necessary diagrams.		
(a) CTS wiring and (b) Concealed wiring	[L2][10M]	
3. With relevant diagrams explain in detail about various types of fuses used in electrical wiring		
systems.	[L2][10M]	
4. Explain briefly about earthing and how it plays an important role in installation.	[L2][10M]	
5. a) How many types of batteries are there?	[L1][5M]	
b) Explain the characteristics of batteries.	[L2][5M]	
6. Explain different methods used for improvement of power factor.	[L2][10M]	
7. a) Explain battery backup.	[L1][5M]	
b) How many types of cables are there? Explain them with neat sketch.	[L1][5M]	
8. What is energy consumption and Explain how it is calculated by an example.	[L2][10M]	
9. a) What is the importance of wiring.	[L2][5M]	
b) Explain how wiring system is classified.	[L2][5M]	
10. Explain about		
a) pvc cables and b) wheather proof cables	[L2][10M]	
11. (a) Define Switch Gear?	[L1][2M]	
(b) Define Battery?	[L1][2M]	
(c) Define Energy and write it's expression?	[L1][2M]	
(d) Define Fuse and Circuit Breaker?	[L1][2M]	
(e) What is Earthing?	[L1][2M]	

BEE Page 7