SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK

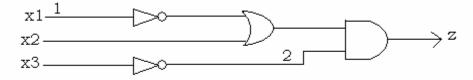
Subject with Code : <u>Advanced Digital system design</u>(18EC4001)

Course & Branch: M.Tech – (DECS) Year & Sem: I-M.Tech & I-Sem

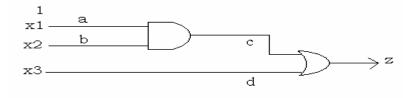
UNIT-I

	<u>DESIGN OF DIGITAL SYSTEMS & SEQUENTIAL CIRCUIT DESIGN</u>
\ D	A CIM A 1 A CITYZ CI' CI

1. a).Draw an ASM chart of JK flip-flop.	[5M]
b). Write an example about state reduction of state tables.	[5M]
2. Design a logic circuit which generates the square of a given three bit binary number. Realize	
the design using ROM.	[5M]
3. a). Draw an ASM chart to design a sequence detector which can detect 01101 sequences.	
For all other bit patterns there is no change in output.	[5M]
b). Explain the use of HDL in digital system design.	[5M]
4. a). Design a logic circuit which generates the square of a given three bit binary number.	
Realize the design using ROM.	[5M]
b). Describe the rules for state assignment. Give an example?	[5M]
5. a). With an example, explain the use of ASM charts in the design of digital circuits.	[5M]
b). Discuss in detail about the following.	
i). Reduction of state tables ii). State assignment procedure	[5M]
6. a). Develop an ASM chart of D flip flop and realize it using only NAND gates.	[5M]
b). Discuss about reduction of state tables and state assignments.	[5M]
7. a).Draw the general structure of an FPGA and explain how a logic- function can be realized	
on FPGA with a simple example.	[5M]
b).Write HDL Program for J-K-flip flop in structural model.	[5M]
8. a).Describe some important features of an FPGA and a CPLD.	[5M]
b). With an example, explain how an FPGA is useful in the design of a digital circuit.	[5M]
9. a). Draw the general structure of a CPLD and explain how a logic function can be	
realized on CPLD with simple example.	[5M]
b).Write HDL Program for D-flip flop in behavioral model.	[5M]
10. Design a digital system by using following	[10M]
a).Chart implication method b). Row matching method.	


<u>UNIT-II</u>

FAULT MODELING & TEST GENERATION


- 1. a). Explain the Stuck at faults with an example. [5M] b). Draw the circuit which realizes the logic function z = x1 x2 + x3 x4 using AND and OR gates. For the circuits realized above, determine a test vector which denotes SA0 fault on the line 'x2'. [5M]
- 2. a). Discuss about any one method of fault diagnosis in sequential circuits using an example. [5M]
 - b) Define a diagnosable sequential machine and how it can be constructed. [5M]
- 3. a). Explain the Boolean difference method with an example. [5M]
 - b). Explain bridge fault model. [5M]
- 4. a). Clearly, distinguish between Meelay and Moore machines with examples. [5M]
- b). Find the test vectors of all SAO and SA1 faults of the circuit function. [5M]

F=x1x2+x1x3'x4'+x2x4 using Kohavi algorithm. [5M]

- 5. Explain the procedure of designing a fault detection experiment with the help of an example. [10M]
- 6. a). Explain the following types of faults. [5M]
 - i). Stuck at faults
 - ii). Bridge faults
 - b). With an example, Explain the procedure involved in the path sensitization technique. [5M]
- 7. What is the significance of Kohavi algorithm? Explain how it is useful in the detection of faults in digital circuits. [10M]
- 8. a). Draw the circuit which realizes the function $f(x) = (x^2 + x^3) + x^3$ x 4 using AND-OR gates using Boolean difference method obtain the test set to detect Sao fault on input line x1 of the circuit. [5M]
 - b). Using the path-sensitization method and Boolean difference method find the test vectors for SAO fault on input line 1 and SA1 fault on the internal line 2 of the circuit shown in figure. [5M]

9. a). Draw the table giving the set of all possible single struck faults and the faulty and fault-free responses and also construct the fault cover table for the circuit in figure. [5M]

b).Discuss the different types of faults in a digital circuits. [5M]

10.a). Discuss about any one method of fault diagnosis in sequential circuits using an example. [5M]

b). Define a diagnosable sequential machine and how it can be constructed. [5M]

<u>UNIT-III</u>

TEST PATTERN GENERATION

1. a). Explain transition counting testing with an example.

[5M]

- b). Discuss in brief about D- algorithm.
- 2. Construct a fault detection experiment for the machine if the that is entirely present, that is with no initial adaption part. [10M]

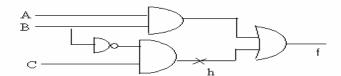
PS	NS,Z		
	X=0	X=1	
A	D,0	C,0	
В	C,0	D,0	
С	A,0	В,0	
D	D,1	A,0	

- 3. a). Explain briefly podem with an example [5M]
 - b). Give the classification of faults that may occur in digital circuits with examples, [5M]
- 4. Explain signature analysis with example.

[10M] [5M]

- 5. a). Explain the procedure involved in D- Algorithm with an example.
 - b). Find the minimized PLA of the following output Boolean function by a PLA minimizer.

$$f1 = (2,4,5,6,7,10,14,15)$$
: $f2 = (4,5,7,11,15)$


6. a). What are the difference between PLA and PAL.

[5M] [5M]

b). Explain how faults are detected in PLA.

7. a) Apply D-algorithm to detect h SA0 fault in the given circuit and derive the test vectors.

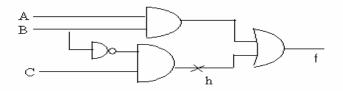
[5M] [5M]

b) How a transition count is used to test faults.

[5M]

8. a) Describe the algorithmic steps involved in PODEM.

[5M]


b) With an example, explain the transition count testing method.

[5M]

9. With an example, explain the test vector for bridging faults.

[10M]

10. a) Apply D-algorithm to detect h SA1 fault in the given circuit and derive the test vectors. [5M]

b). Explain in detail different test pattern generation method.

[5M]

UNIT –IV

PROGRAMMING LOGIC ARRAYS & FAULT DIAGNOSIS IN SEQUENTIAL CIRCUITS

1. a).Realize F1 and F2 using PLA. Give the PLA table and interconnection diagram for the PLA. [5M] $F1(a,b,c,d) = \sum m(1,2,4,5,6,8,10,12,14)$ F2(a,b,c,d) = m(1,2,4,5,6,11,12,14,15)

b).List the advantages of PLA. [5M]

2. a). Explain about PLA folding.

[5M]

b). Plot following PLA on the map. Identify the undetectable faults. Determine minimal test for all detectable test for all detectable faults. [5M]

X1	X2	X3	X4	Z1	Z2
0	2	2	1	1	0
2	1	1	2	1	1
0	1	2	1	0	1

3. Give the PLA realization of the following functions using a PLA with 5 inputs, 4 outputs and 8 AND gates.

 $F1(a,b,c,d) = \sum m(0,1,2,311,12,13,14,15,16,17,18,19,27,28,29,30,31)$

$$F2(a,b,c,d) = \sum m(4,5,6,7,8,9,10,11,20,21,22,23,30)$$

[10M]

- 4. a). Design a 3 bit BCD to grey code converter and realize the circuit using PLA and then show that how folding will reduce the number of cross points given on the PLA. [5M]
 - b). Describe the advantages of PLA minimization and folding.

[5M] [5M]

- 5. a) List out and explain briefly about the faults that may occur in PLAs.
 - b). Briefly describe about PLA folding. [5M]
- 6. a). With examples, explain in detail about various types of cross point fault that occur in PLAs. [5M]
 - b) With an example, explain how test generation can be achieved in testing a PLA. [5M]
- 7. a). Explain the different types of fault models and fault types in a PLA. [5M]
 - b). Discuss briefly, the steps involved in the PLA folding algorithm 'COMPACT'. [5M]
- 8. Discuss about state Identification experiment and fault detection experiment. [10M]
- 9. Find the shortest homing sequence for the machine shown in table. Let n=4. [10M]

PS	NS,Z			
	I1	I2	I3	
S1	S1,0	S1,0	S1,0	
S2	S3,0	S2,0	S2,0	
S3	S2,0	S4,0	S3,0	
S4	S4,0	S3,0	S4,0	

[5M]

10. a). Explain the different types of fault diagnosis methods in sequential circuits.b). Explain the procedure of designing a fault detection experiment with the help of an example.

[5M]

UNIT -V

PLA TESTING & ASYNCHRONOUS SEQUENTIAL MACHINE

 a). With an example, explain how test generation can be achieved in PLA testing. b). Explain how faults are detected in PLA. 	[5M] [5M]
2. a).Explain following with example.	[5M]
i). Flow tables	F- 1
ii). State Reduction	
b). Write a brief note on minimal closed covers?	[5M]
3. a). With respect to an asynchronous sequential machine, explain about minimal closed corn	ners.
	[5M]
b). Define the races and cycles in sequential circuits?	[5M]
4. Write short notes on the following.	
a) Capabilities and limitations of FSM	[4M]
b) Transition checks approach in sequential circuits.	[3M]
c). Minimum closed covers	[3M]
5. Explain following with an example.	
i). Fundamental mode model	[5M]
ii). Hazards	[5M]
6. a). Explain briefly, the occurrence of various types of hazards in digital circuits.	[5M]
b).Implement a hazard free circuit for the following function:	[5M]
f(ABCD) = A'BC' + A'B'C + CD' + AC	
7. Write a short note on.	
i). Design for testability	[5M]
ii). Field programmable gate arrays	[5M]
8. Give a state assignment without critical races to each of the following asynchronous machine sho	own in

q ×	10	11	12	13
А	(A)	C	(A)	В
В	Α	B	Α	$^{\circ}$
С	(C)	(C)		D
D	С	В	D	(D)
E	E	F	E	D
F	E	(F)	Α	В

figure.

[10M]

9. Construct the fault detection experiment for the machine shown below.

[10M]

PS	NS,Z		
	X=0	X=1	
A	В,0	C,1	
В	C,0	D,0	
С	D,1	C,1	
D	A,1	В,0	

- 10. Write short notes on the following.
 - a) Capabilities and limitations of FSM

[5M]

[5M]

b) Transition check approach in sequential circuits

Prepared by: J.Rajanikanth