

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : ENGINEERING PHYSICS(18HS849)

Course & Branch: B.Tech – EEE

Year & Sem: I-B.Tech & I-Sem

Regulation: R18

<u>UNIT –I</u>

WAVES & OSCILLATIONS

I. Two marks questions

1	What are damped oscillations?	(2M)
2	Define Q-factor?	(2M)
3	Derive the differential equation for damped oscillator?	(2M)
4	Define Mechanical Oscillator?	(2M)
5	Define Electrical Oscillator?	(2M)
II.	Essay questions	
1	a) What are damped oscillations? Derive the equation of motion of damped oscillato	or? (7M)
	b) An under damped oscillator has its amplitude reduced to $(1/10)^{\text{th}}$ of its initial value	Je
	after 100 oscillations. If time period is 2 seconds, calculate (1) the damping const	ant (3M)
	and (2) the decay modulus.	
2	a) Derive and solve differential equation of damped harmonic oscillator?.	(6M)
	b) The oscillation of a tuning fork of frequency 200 c p s die away to i/e times their	
	amplitude in one second. Show that the reduction in frequency due to air damping	g is
	exceedingly small	(4M)
3	a) What are forced oscillations? Obtain an expression for the amplitude of forced os	scillator
	and give the condition for amplitude resonance?	(6M)
	b) The amplitude of an oscillator of frequency 200 Hz falls to 1/10 of its initial value	e after
	2000 cycles.Calculate (i) its relaxation time (ii) damping constant	(4M)
4	a) What are the characterstics of Simple Harmonic Oscillator?	(2M).
	b) Explain Different types of vibrations?	(8M)
5	a) Draw the Mechanical Anology of S.H.M?	(4M)
	b) Derive the equation & solution of S.H.M?	(6M)
6	a) Define Q-factor?	(2M)
	b) What is Power dissipation?	(4M)
	c) The frequency of a tuning fork is 300 Hz.If its quality factor Q is 5 X 10 ⁴ , find	
	time after which its energy becomes $(1/10)$ of its initial value.	(4M)

5 a) Explain detailed mechanism & solution of equation in electrical oscillator? (8M) b) A capacitor of 3 μ F is discharged through 1 ohm resistance and 3 henry inductance. Calculate the frequency of oscillation?. (2M) 6 a) Describe Energy damped harmonic oscillator? (6M). b) The amplitude of a second pendulum falls to half initial value in 150 sec Calculate the Q- facor? (4M) 7 a) Describe equation of forced vibrations? (4M) b) Describe the amplitude & phase of forced vibrations? (6M) 10 a) Determine the electrical analogy for a simple oscillator? (4M) b)Describe the equation of electrical oscillator interms of inductance & capacitance? (6M)

QUESTION BANK 2018

<u>UNIT –II</u>

LASERS

I. Two marks questions

1	What are the characteristics lasers?	(2M)
2	Define Meta stable state?	(2M)
3	Abbreviate LASER and MASER?	(2M)
4	How laser radiation is utilized in medical field?	(2M)
5	Write two differences between stimulated and spontaneous emission of radiations?	(2M)
II.	Essay questions	
1	a) Describe the important characteristic of laser beam?	(6M)
	b) Explain the difference between spontaneous and stimulated emission of radiation?	(4M)
2	a) Derive the relation between the various Einstein's coefficients of absorption and em	nission of
	radiation.	(6M)
	b) the wavelength of emission is $6000 \stackrel{0}{A}$ and the coefficient of spontaneous emission is	s 10 ⁶ /s.
	Determine the coefficient for stimulated emission? (Dr. SLR)	(4M)
3	a) Explain population inversion?	(5M)
	b) Explain the various pumping mechanisms?	(5M)
4	a) Write brief note on basic components of laser with the help of neat diagram?	(5M)
	b) Define Meta stable state and write its significance?	(5M)
5	a) Explain the construction and working principle of He-Ne laser with suitable energy	level
	diagram.	(8M)
	b) Write few advantages of He-Ne laser.	(2M)
6	a) State population inversion and give its importance in the production of laser?	(6M)
	b) Calculate the population of the two states in He:Ne laser that produces light of wave	elength
	6328 $\stackrel{0}{A}$ at 27 ⁰ C? (Dr. SLR)	(4M)
7	a) Explain the construction and working of Nd:YAG laser with suitable energy level	
	diagram?	(8M)
	b) What are the advantages of Nd:YAG laser?	(2M)
ENGI	NEERING PHYSICS	

QUESTION BANK 2018 8 a) Distinguish between He:Ne laser and Nd:YAG laser? (5M) b) Explain the mono chromaticity and coherence of characteristics of laser? (5M) 9 a) Write short note on applications of lasers in scientific field? (5M) b) What is lasing action? (5M) 10 a) State and explain the absorption process? (5M) b) Write short note on applications of lasers in medical field? (5M) **UNIT-III INTRODUCTION TO QUANTUM MECHANICS AND SOLUTION OF WAVE EQUATION** I.<u>Two marks questions</u> 1.What are matter waves?. (2M)

	2,Mention any two properties of matter waves?.	(2M)
	3. What is Heisenberg's uncertainty principle?.	(2M)
	4. What is the significance of wave function?.	(2M)
	5.What are eigen functions?.	(2M)
II <u>.</u>	Essay questions	
1	a) Derive the expression for de Broglie wavelength for an electron?.	(6M)
	b) Calculate the de Broglie wavelength of a neutron whose kinetic energy is two times the	e rest
	mass of the electron.given $m_n = 1.67 \times 10^{-27} \text{ kg}$, $m_e = 9.1 \times 10^{-31} \text{ kg}$ and $h = 6.63 \times 10^{-34} \text{ kg}$	g. (4M)
2	a) Explain the properties of matter waves.	(5M)
	b) The position of electron in an atom is located within a distance of $0.1A^0$ using a micro	scope.
	What is the uncertainty in the momentum of the electron located in this way?	(5M)
3	a) Derive Schrödinger's time independent wave equation.	(7M)
	b) Explain the physical significance of wave function.	(3M)
4	a) Derive Schrödinger's time dependent wave equation.	(7M)
	b) An electron is moving under a potential field of 15kv. Calculate the wavelength of electron	tron
	wave.	(3M)
5	a) Describe the behavior of particle in a one dimensional infinite potential well in terms o	f
	Eigen values and function.	(7M)
	b) An electron is confined to a one dimensional potential box of 2 A ^o length.	
	Calculate the energies corresponding to the second and forth quantum states(in eV).	(3M)
6	a) Explain Heisenberg uncertainty principle?.	(6M)
	b) The position of an electron in an atom is located within a distance of 0.1 A ^o using a	
	microscope. What is the uncertainty in the momentum of the electron located in this way?	. (4M)
7	a) Draw normalized wave functions for ground and first excited states.	(6M)
	b) An electron is bound in a one dimensional infinite well having a width of 1×10^{-10} m.	
	Find the energy values in the ground state and the first two excited states.	(4M)
8	a) How are eigen energy values of a particle in one dimensional potential box quantized?.	(6M)

b) An electron is bound in a one-dimensional box having size of $4 \ge 10^{-10}$ m.What wi	ll be
its minimum energy?.9 a) Determine the relation between Wavelength & Potential field of a particle by using de Broglie's hyphothesis?.	(4M) (6M)
b) Calculate the velocity and kinetic energy of an electron of wavelength of 1.66 x 10	⁻¹⁰ m. (2M)
10 a) Describe Wave & Particle Nature of Matter Waves?	(6M)
b) A quantum Particle confined to one dimensional box of width 'a' is known to be in	its
first excited state. Determine the probability of the particle in the central half.	(4M)
UNIT-IV	
INTRODUCTION TO SOLIDS AND SEMICONDUCTORS	
I. <u>Two marks questions</u>	
1.Define Drift Veloctity?.	(2M)
2. What is relaxation time?.	(2M)
3. What is Mean free path?.	(2M)
4. What are allowed and forbidden energy bands?.	(2M)
5.What is doping?.	(2M)
II. Essay questions	
1. a) What are the salient features of classical free electron theory?	(6M)
b) Find the relaxation time of conduction electrons in a metal of resistivity is 1.54 X 1	0 ⁻⁸ Ω-m,
if the metal has 5.8 X 10^{28} conduction electrons per m ³ . Given m= 9.1x 10^{-31} kg.	
$e = 1.6 \times 10^{-17} \text{ C}.$	(4M)
 a) Explain quantum free electron meory. b) Write its advantages over classical free electron theory. 	
3 a) Explain the origin of energy bands in solids ?	(4101) (6M)
b) Using free electron model derive an expression for electrical conductivity in metal.	(4M)
4 a) Classify the solids into conductor, semiconductor and insulators based on band the	ory. (6M)
b) Calculate the mean free path of electron in copper of density 8.5 X 10^{28} m ⁻³ . and references	sistivity
of $1.69 \times 10^{-19} \Omega$ -m. Given m= $9.1 \times 10^{-31} \text{ kg}$, T = 300 K , e = $1.6 \times 10^{-19} \text{ J}$.	
$K_B = 1.38 \text{ X } 10^{-23} \text{ JK}^{-1}$?.	(4M)
5 a) Explain intrinsic semiconductor?	(6M)
b) What is Fermi level? Locate its position for intrinsic semiconductor.	(4M)
6 a) Explain extrinsic semiconductor.	(4M)
b) Distinguish between n-type and p-type semiconductors?	(6M)
<i>(a)</i> Derive the expressions for intrinsic carrier concentration and Fermi level for intrin semiconductor?	(6M)
b) The following data are given for intrinsic Ge at 300K $n_i = 2.4 \times 10^{-19} \text{ m}^{-3} \mu_n = 0.39$	$m^2 v^{-1} s^{-1}$
$\mu_h = 0.19 \text{ m}^2 \text{ s}^{-1} \text{ s}^{-1}$. Calculate the resistivity of the sample.	(4M)
8 (a) Explain Drift and diffusion processes in semiconductors?	(6M)

(6M)

- b) Find the diffusion coefficient of electron in silicon at 300K if $\mu_e = 0.19 \text{ m}^2 \text{ v}^{-1} \text{ s}^{-1}$?. (4M)
- 9 a) Derive Einstein's relation in semiconductors?
 - b) The resistivity of an intrinsic semiconductor is 4.5 Ω -m at 20°C and 2.0 Ω -m at 32°C. What is the energy band gap?. (4M)
- 10 a) Describe the Hall effect in a semiconductor.
 - b) Write the applications of Hall effect.

c) The R_H of a specimen is $3.66 \times 10^{-4} \text{m}^3 \text{c}^{-1}$. Its resistivity is $8.93 \times 10^{-3} \Omega \text{m}$. Find mobility and charge carrier concentration.

UNIT-V

PHYSICS OF NANOMATERIALS

I. Two marks questions

1	Define top down and bottom up process?	(2M)
2	What is the principle in the Ball milling synthesis process of nanomaterial?	(2M)
3	Write allotropes of Carbon?	(2M)
4	What are the various structures of carbon nanotubes?	(2M)
5	What are the advantages of sol-gel process?	(2M)

II. Essay questions

1.	a) What is nanomaterial? Write the classification of nanomaterials	(4M)
	b) Explain the basic principle of nanomaterials.	(6M)
2.	a) What is Quantum Confinement?	(4M)
	b) Write the applications of nanomaterial?	(6M)
3.	a) Explain why surface to volume ratio very large for nano materials?	(6M)
	b) Find the surface area to volume ratio of Sphere using surface area and volume calculat	ion for
	the given radius is 5 meter?	(4M)
4.	a) What are the techniques available for synthesizing nanomaterials?	(3M)
	b) Explain ball milling technique for synthesis of nanomaterial?	(7M)
5.	a) Explain Sol-Gel technique for synthesis of nanomaterial?	(7M)
	b) Write advantages of sol-gel process?	(3M)
6.	a) What are the differences between nanotechnology and NanoScience?	(5M)
	b) Write short note on physical properties of carbon nanotubes?	(5M)
7.	a) What are carbon nanotubes? Mention its structures?	(5M)
	b) Write brief note on applications of Carbon nanotubes?	(5M)
8.	a) What is nanotechnology? And give applications of carbn nanotubes (CNT'S) in biome	dical
	field?	(6M)
	b) What are allotropes? Write allotropes of Carbon?	(4M)
9.	a) Define Condensation, Crystal growth and Nucleation?	(6M)
	b) Write brief note on working and characteristics of carbon nanotubes based field effect	
	transistor (FET)?	(4M)

QUESTION BANK	2018
---------------	------

10. a) Mention the important applications of carbon nanotubes in information technology? (5M)b) Explain the sensor and catalyst applications of carbon nanotubes? (5M)

Prepared by:

Mrs.A.Usha Rani .

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : ENGINEERING PHYSICS(18HS0849)

Course & Branch: B.Tech – EEE

Year & Sem: I-B.Tech & I-Sem

Regulation: R18

<u>UNIT –I</u>

WAVES & OSCILLATIONS

1.	Oscillations are damped due to presence of]
	A) linear motions	B) restoring force	C) frictional force	D) mechani	cal force	
2.	When friction reduce	es the mechanical en	ergy of the system as	time passes,	the	
	motion is said to be	;			[]
	A) simple	B) damped	C) random	D)linear		
3	The oscillations of a	system in the present	ce of som resistive fo	rce are	[]
	A)Linear motion	B)simple harmonic	motion C)damped	motion I	D)random n	notion
3.	Shock absorbers in a	utomobiles are one p	particle application of	2	[]
	A)Linear motion	B)simple harmonic	motion C)damped	motion I	D)random n	notion
4.	Maximum displacen	nent from equilibriun	n position is		[]
	A) freauency	B) amplitude	C)wavelength	D) peroi	id	
5.	Displacement time gr	aph depicting as osc	illatory motion is		[]
	A)Cos curve	B)Sin curve	C) Tangent curve	D) Strai	ght line	
6.	In S.H.M., Velocity a	t equilibrium position	n is		[]
	A) Minimum	B) Constant	C)Maximum	D) Zero		
7	Natural frequency of	a guitar string can be	e changed by changin	g of	[]
	A) Area	B)Diameter	C)Length	D) Stiffi	ness	
8	Over-damping results	s in			[]
	A) Slower return to e	quilibrium	B)Faster return to	equilibrium		
	C) Equilibrium is new	ver achieved	D)Arrhythmi ret	urn to equilib	orium	
9	As amplitude of resc	nant vibrations decre	eases, degree of damp	ing]]

A) increases B) remains same C) decreases D) varies 10 Oscillations becomes damped due to 1 A) normal force B) friction C)tangential force D) parallel force 11 In S.H.M objects acceleration depends upon 1 B) magnitude of restoring force A) displacement from equilibrium position C) both A & B D) force exerted on it 12 Angular frequency of S.H.M. is equal to 1 Γ A) 2π B) $2\pi f$ C) 2f D) 1/T 13 For a resonating system, it should oscillate 1 A) bound B) only for some time C) freely D)for infinite time 14 Another term used for vibration called ſ 1 A)Association (B) motion (C) Tension (D)Oscillation 15 Waves which require medium for propagation are 1 ſ D)longitudinal A) electromagnetic B) mechanical C) transverse 16 X- ray waves, vision waves and radio waves are the examples of 1 ſ D)electromagnetic A) mechanical B) transverse C) longitudinal 17 The restoring force in a S.H.M. is _____ in a magnitude when the particle is instantaneously at rest is 1 Γ A) Zero B) Minimum C) Maximum D) None 18 Energy is supplied to the damped oscillatory system at the same rate at which it is dissipating energy, then the amplitude of such oscillations should become constant. such oscillations are called ſ 1 B) Undamped Oscillations A) Damped Oscillations C) Coupled Oscillations D) Maintained Oscillations 19 The S.H.M. at resonance ______ in the ideal case of zero damping 1 Γ B) Minimum A) Maximum C) Zero D) Infinite 20 A motion which repeats itself after equal intervals of time is called 1 A) Harmonic motion B) Wave motion C) Simple motion D) Pulsed motion 21 The Number of oscillations per second is known as 1 D) Wavelength A) Amplitude B) Frequency C) Time period 22 The time taken for one oscillation is known as 1 A)Amplitude B) Frequency C) Time period D) Wavelength 23 The ratio of the energy of the oscillator to the energy lost per radian of the angular frequency is known as 1 Т A) Quality factor B) Resonance factor C) both A & B D) None 24 The Quality factor is depends on _ 1 Γ A) Inductance 'L' B)Capacitance 'C' C) both A & B D) None 25 The amplitude & total energy remain constant for an infinite time.such vibrations are [1 A) Free vibraions B) Forced vibrations C) Damped vibrations D) None 26 The distance travelled by a wave at particular time 't' is known as 1 E A)Amplitude B) Frequency C) Time period D) Wavelength 27 A particle set into oscillations in a resisting medium like air, oil is example of ſ 1 ENGINEERING PHYSICS

QUESTION BANK 2018

			QU	JESTION BANK	2018	
A) Damped	vibrations B) Forced v	ibrations C	C) free vibrations	D) none		
28 Radio tunnin	ig is an example of		vibrations.	[]	
A)Resonant	vibrations B) Forced v	ibrations C	c) free vibrations	D) none		
29 Oscillations	becomes damped due t	0		[.]	
A) normal f	orce B) friction	C)t	angential force	D) parallel force		
30 Power dissip	pation in damped harmo	onic oscillato	r is	[]	
A) $P = 2bE$	B) $P = 2b + E$	C)	P = 2b - E	D) $P = 2b/E$		
31 The ratio of	the energy of the oscill	ator to the en	ergy lost per radia	an of the angular		
Frequency is	5]]	
A)Quality fa	ctor B) frequency	т С)	amplitude	D)none		
32 The frequent	cy of free vibrations de	pends upon _	of the	e body []	
A) Mass	B) Elasticity	C)	Shape I	D)All of the above		
33 If freely osci	llating pendulum,the a	mplitude dec	reases continuous	ly with time is []	
A) Electrica	Oscillator B) Mecha	anical Oscilla	tor C) both A	& B D) None		
34 Vibrations a	re divided into	types.		[]	
A) 1	B) 2	C)	3 I	D) 4		
35 Natural freq	uency is exist in	vibı	ations	[]	
A) Free vibr	aions B) Forced vib	rations C	2) Damped vibration	ons D) None		
36 The Sum of	Potential energy & Kir	etic energy i	S	[]	
A) Total End	ergy B) Kinetic En	ergy (C) Potential Energ	y D)None		
37 In forced vi	brations, the amplitude	is always		[]	
A) Large	B) Small	C) large (o	r) small	D) None		
38 In free vibra	tions,the amplitude is a	lways		[]	
A)Large	B) Small	C) large (o	r) small	D) None		
39 The	energy of the	e oscillator is	spent in overcom	ing air resistance []	
A) Mechanie	cal B) Electrical	C) Both A	& B D)]	None		
40 A resoring fo	rce is proportional to d	isplacement	in	oscillator []	
A) Mechanie	cal B) Electrical	C) Dampe	d D)	None		
		<u>UNIT –II</u>				
		(LASERS	<u>)</u>			
1. In He-Ne las	er, the ratio of He and	Ne in gas mi	xture is		[]
A) 1:10	В) 10:1	C) 1:100	D) 100:1		
2. He-Ne laser	is a good example for	a leve	el system.		[]
A) Two	В) Three	C) Four	D) Nine		
3. In excited st	ate, the atoms will rem	ain for a time	period of		[]
A) 10 ⁻⁴ sec	B) 10 ⁻⁶ sec		C) 10 ⁻⁸ se	ec D) 10^{-10} sec	2	
4. The lasing a	ction is possible only if	there is			[]
A) A black b	ody	B)	Population inversi	ion		
C) A set of r	eflecting mirrors	D)	Oscillation of lase	er		
5. The pumpin	g process used in a He-	Ne gas Laser	is		[]
A) Optical p	umping	-	B) Electric disc	harge	-	-
· · · 1	· ·		·	-		
NGINEERING PH	IYSICS					

	C) Chemical reaction		D) Passing forward b	oias		
6.	He-Ne gas laser is		, 8		[1
	A) Solid state laser	B) Semiconductor laser	C) Continuous laser	D) Pulsed lase	er	-
7.	The ratio of Einstein	coefficients $\frac{A_{21}}{B_{21}} =$			[]
	A) $\frac{8\pi h\vartheta^3}{2}$	B) $\frac{8\pi h\vartheta^3}{21}$	$(\Gamma) \frac{8\pi h \vartheta^3}{2}$	D) $\frac{2\pi h\vartheta^3}{2\pi h\vartheta^3}$		
0	c^3	c^2	c) c	c^3	г	1
0.	A) Optical pumping		B) Chamical reaction	2	L]
	C) Electric discharge		D) Thermal process	1		
9	Laser radiation is		D) Therman process		ſ	1
	A) Monochromatic	B) Highly directional C	C) Coherent and Stimulat	ed D) All	L	г
10	. The wavelength of th	e laser emitted by the He-	Ne laser is	,	ſ	1
	A) 694.3 nm	B) 632.8 nm C	c) 652.5 nm	D) 671.6 n	m	-
11	. In a He-Ne laser, ator	ns involved in laser emiss	sion are	,	[]
	A) Neon	B) Helium C	C) Hydrogen	D) Chlorin	ie	
12.	The source of excitation	on in He-Ne gas laser is			[]
	A) Xenon flash lamp	B) Optical pumping C	Electric discharge D	Direct conversion	n	
13.	Emission of photon with	hen an electron jumps fro	m higher energy state to	lower energy sta	ate du	e
	to interaction with and	other photon is called			[]
	A) Spontaneous emis	ssion B) S	timulated emission			
	C) Induced emission	D) A	mplified emission			
14.	Nd: YAG laser is				[]
	A) Gas laser B)	Liquid laser C	Solid laser D) Sem	iconducting lase	r	
15.	Measurement of variat	tion of divergence of laser	beam with distance is u	sed to determine	e []
1.0	A) Coherence B)	(Monochromaticity C)	Brightness D) Dire	ctionality	r	,
16.	Coherence of light is r	neasured from	Visibility of interformers	fuin and it used	L]
	A) variation in spot si C Prightness of the	beem D) Visibility of interference Wavelength of the beau	e fringes it prod	uces	
17	Rate of stimulated em	ission is proportional to) wavelength of the bear	11	Г	1
17.	A) Population of low	er energy state			L	1
	B) Population of exci	ited state				
	C) Incident radiation	density				
	D) Population of exe	cited state and incident ra	diation density			
18.	What is the need to a	chieve population inversion	on?		[1
	A) To excite most of	the atoms			-	-
	B) To bring most of	the atoms to ground state				
	C) To achieve stable	condition				
	D) To reduce the tim	e of production of laser				
19.	Which of the followin	g can be used for generati	on of laser pulse?		[]
	A) Ruby laser	B) Carbo	n dioxide laser			
	C) Helium neon laser	D) Nd- Y	AG laser			

		QUESTION BANK 20	18	
20. Which of the following can be used in vib	rational analysis of s	structure?]	1
A) Maser B) Quarts	C) Electrical waves	D) Laser		1
21. Directionality property of laser can be used	lin		ſ	1
A) Surveying B) Remote sensing	C) Lidar	D) All Correct	L	
22. In Nd-YAG laser, YAG means	,	,	ſ	1
A) Yttrium Aluminium Garnet	B) Y3Al501	2	L	
C) Yellow Aluminium Garnet	D) Both A a	nd B		
23. The active medium in Nd:YAG laser is	,		ſ	1
A) Nd B) YAG crystal	C) Y	D) AG	-	-
24. In which region, laser emission occurs in I	Nd:YAG laser	, ,	ſ	1
A) IR region at $1.06\mu m$ B) visible region	C) UV region	D) RF region	L	-
25. The role of He in He-Ne laser is			[]
A) He is an active medium	B) Population in	version takes place in H	e	
C) Stimulated emission takes place in He	D) He atoms hel	p in exciting Ne atoms		
26. The reason for narrow tube in He-Ne laser			[]
A) Atomic collision with tube wall increase	S			
B) Atomic collision with tube wall decrease	S			
C) There is no effect of narrow tube on He-	Ne Laser			
D) Atomic collision with tube wall constant				
27. Population inversion in laser means			[]
A) Number of atoms in ground state are mo	re than number of at	coms in excited state	-	-
B) Number of atoms in ground state are less	than number of atom	ms in excited state		
C) Number of atoms in ground state is equa	l to number of atoms	s in excited state		
D) None				
28. Metastable state has life time approximately	/		[]
A) 10^{-3} s B) 10^{-8} s	C) 10 ⁻¹⁰ s	D) 10 ⁻¹² s		
29. Which of the following statements concerning	ing a laser system is	incorrect?	[]
A) Spontaneous emission occurs in the lase	er system.			
B) The intensity of the laser beam can be v	aried by changing th	ne reflective coefficient of	of the	
partially reflecting mirror.				
C) The laser system does not require an ext	ternal energy source			
D) The laser medium consists of a metastal	ole state.			
30. Which one of the following statements bes	t describes stimulate	ed emission in a laser?	[]
A) Electrons collide with atoms in a metast	able state and cause	photons to be emitted.		
B) Atoms in a metastable state de-excite an	d cause electrons to	be emitted.		
C) Photons interact with atoms in a metasta	ble state and cause	photons to be emitted.		
D) Photons interact with atoms in a metasta	ble state and cause	electrons to be emitted.		
31. Why is laser light monochromatic?			ſ	1
A) The excited electrons are in a metastable	e state.		-	-
B) The system is in a state of population in	version.			
C) The emitted photon and incident photon	are of the same pha	se.		
ENGINEERING PHYSICS				

D) Photons of the same energy as that of the incident photons are emitted when the					
electrons transit down fr	om a higher energy le	evel.			
32. What determines the color of	light?			[]
A) Its intensity B) Its wavelength	C) Its source	D) None		
33. Which scientist first came u	p with the idea of stin	mulated emission?		[]
A) Alexander Graham Bell	B) Isaac Newton	C) Arthur Schalow	D) Albert F	Einstein	
34. The life time of ground state	e is			[]
A) Limited	B) Unlimited	C) Zero	D) None	e	
35. Pickout the monochromatic	light			[]
A) Sun light	B) Tube light	C) Laser	D) Sodiı	um light	
36. The population of the variou	us energy levels of a s	system in thermal equ	ilibrium	[]
A) Boltzmann distributive	Law B) Stimulated	d emission C) Plan	ck's Law D)) None	
37. Units of Planck's constant i	S			[]
A) sec	B) Watts	C) joule	e-sec D) m-sec	
38. If an electron excites from l	ower state to higher s	tate then the process i	s known as	[]
A)Absorption B) Stimula	ated emission C) Sp	ontaneous emission	D) All of th	e above	
39. Coherence means				[]
A) Ordering of light field	B) Monochromatici	ty C) Brightness	D) Directio	nality	
40. A He-Ne laser emits light of wavelength 632.8 nm and has a output power 2.3 mW then the					
number of photons emitted	per second is			[]
A)73. 3 x 10 ¹⁴	B) 29.56 x 10 ¹⁴	C) 1173. 5 x	10 ¹⁴ D) 23	. 5 x 10 ¹⁴	ł

UNIT-III

INTRODUCTION TO QUANTUM MECHANICS & SOLUTION OF WAVE EQUATION

1.	When an electron is	accelerated by	a potential of V	volts. Then th	e de Broglie w	vavelengt	h is
	given by					[]
	A) $\frac{12.26}{\sqrt{V}} nm$	B	$\frac{26.12}{\sqrt{V}}A^0$	C) $\frac{12.26}{\sqrt{V}}$ µ7	$n \mathrm{D}) \frac{12.26}{\sqrt{V}} A^0$		
2.	An electron, neutron	and proton ha	ve the same way	elength. Whic	h particle has	greater	
	velocity?					[]
	A) Neutron	В) Proton	C) El	ectron	D) All	
3.	Probability density o	f wave function	on is			[]
	A) Ψ	B) $ \Psi ^2$	С) ФЧ	Ψ*Ψ	D) none		
4.	4) When an electron	is accelerated	through a potent	ial field of 10	0 eV then it is	associate	d with
	a wave of wavelengt	h equal to				[]
	A) 0.1226 nm	n B)	1.226 nm	C) 12.26 nm	D) 122.6 nm	L	
5.	The wavelength of d	e Broglie wav	e associated with	a moving par	ticle is indeper	ndent of i	ťs
	A) Mass	B) Charge	C) Ve	locity D) Momentum	[]
6.	If E is the kinetic ene	ergy of the ma	terial particle of	mass m then th	he de Broglie		
	wavelength is						
	$(A) \frac{h}{h}$	B) $\frac{\sqrt{2mE}}{2mE}$	C) h	2mE	$D) \frac{h}{h}$	ſ	1
	$\sqrt{2mE}$	b) h	0) // (LIIIL	D $2mE$	L	1
7.	The characteristic of	particles are				[]
ENGI	NEERING PHYSICS						

QUESTION BANK 2018 A) Wavelength B) Frequency C) Amplitude D) Momentum 8. Band theory of solid was developed by 1 A) Sommerfeld B) Drude and Lorentz D) Einstein C) Bloch 9. The dual nature is exhibited by ſ 1 A) Particle only B) Wave only C) Photon only D) By both A and B 10. The wave function Ψ associated with a moving particle 1 B) does not have direct physical meaning A) Is not an observable quantity C) is a complex quantity D) all of the above 11. The most probable position of a particle in a one dimensional potential well of width a in the first quantum state is 1 A) a/4 B) a/3 C) a/2 D) 2a/3 12. Einstein mass -energy relation is ſ 1 A) $v = \frac{mc^2}{h}$ B) $v = \frac{mc}{h}$ C) $v = \frac{hc}{\lambda}$ D) $\lambda = \frac{mc}{h}$ 13. The uncertainty principle is applicable to] Γ A) Only small particles B) Microscopic particles C) All material particles D) Only tiny particles 14. The wavelength of electron moving with a velocity of 500 m/s is E 1 A) 1.45 nm B) 0.50 nm C) 2.90 nm D) 3.00 nm 15. Dual nature of matter wave proposed by 1 ſ B) Planck C) Einstein A) de Broglie D) Newton 16. Which of the following equation is the normalized wave equation 1 A) $\iiint |\Psi|^2 \, dx \, dy \, dz = 0$ B) $\iiint |\Psi|^2 dx dy dz = 1$ C) $\iiint |\Psi| dx dy dz = 0$ D) $\iiint |\Psi| dx dy dz = 1$ 17. In a one dimensional potential box, particle energy 1 C) $\frac{n^2h^2}{2ma^2}$ D) $\frac{n^2\pi^2\hbar^2}{8ma^2}$ B) $\frac{n^2\pi^2h^2}{2ma^2}$ A) $\frac{n^2\pi^2\hbar^2}{2ma^2}$ 18. The characteristic of particles are 1 D) All the above A) Mass B) Velocity C) Energy 19. Potential barrier strength depends on 1 A) mass of the particle B) potential of the barrier C) widthe of the barrier D) All of the above 20. Velocity of matter wave is always] [A) Lesser than velocity of light B)Equal to velocity of light C)Greater than velocity of light D)None of these 21. If an electron is moving under a potential field of 15 kV. Calculate the wavelength of electron waves 1 E B) 0.1 Å C) 10 Å D) 0.01Å A) 1 Å 22. According to the de Broglie, electron exhibits which nature? 1 ſ A) Wave B) Particle C) Wave and Particle D) Energy 23. The equation $\iiint |\Psi|^2 dx dy dz = 1$ represents ſ 1 ENGINEERING PHYSICS

A) Orthogonal wave	B) Normaliz	B) Normalized wave function			
C) Orthogonal and N	lormalized wave fun	ction D) none	r	-	
24. The uncertainty principle wa	as proposed by		l]	
A) de Broglie		B) Heisenberg			
25 The electrons which are in y	valence hand are call	D) Sommernend	L J		
A) Valence electrons	B) Protons	C)Neutron	s D) None of the	ese	
26 Finstein mass energy relation	n is	C)r (euron		1	
$A) E = mc^2$	B) $\frac{h}{2} = mc$	C) $\vartheta = \frac{m\alpha}{h}$	$\frac{1}{2}$ D) All	L	
27. The characteristics of wave	s are	n	ſ	1	
A) Energy	B) Phase	C) Mass	D) Velocity	1	
28. When an electron is accelerated	ated, if de Broglie wa	velength is 1 A ^o then t	he applied voltage	e is	
A) 12 volts	B)150 volts	C)15 volts D)5	500 volts [1	
29. The Concept of matter of mat	atter waves was sugg	gested by []	_	_	
A) de Broglie	B) Planck	C) Einstein	D) none		
30. Quantum theory of radiation	was proposed by]]	
A)de Broglie	B)Planck	C) Einstein	D) none		
31. Mass- Energy relation was p	proposed by]]	
A)de Brogli	B) Planck	C)Einstein	D) none	_	
32. The quantum free electron t	heory is based on th	e principle of]]	
A) classical mechanics	B) statistical mecha	anics C) quantum med	chanics D) none		
33. The charge of electron is]]	
A)negative	B)positive	C)neutral	D) none		
34 .The charge of proton is			[]	
A)negative	B)positive	C)neutral	D) none		
35 The charge of neutron is			[]	
A)negative	B)positive	C)neutral	D) none		
36. Time independent wave equ	ation was proposed	by	[]	
A)heisenberg	B) Schrodinger	C) de Broglie	D) none		
37. An electron, neutron, proton h	nave the same wavel	ength.Which particle h	as greater velocity	у.	
A)Neutron	B)Proton	C) Electron	D) none []	
38. A moving particle is associa	ted a wave, then the	wave is called as	[]	
A) Matter Wave	B)F	Pilot Wave			
C) de Broglie Wave	D) .	All of the above			
39. Characterstics of waves are			[]	
A) Wavelength	B) Velocity	C) Momentum	D) Mass		
40. Characterstics of Particles a	re		[]	
A) Wavelength	B) Time peroid	C)Frequency	D) Mass		

UNIT-IV

INTRODUCTION TO SOLIDS & SEMICONDUCTORS

0	0	-	0
			×
	υ		υ.

1.Classical free electron theo	ory was developed by		[]
A) Sommerfeld	B) Drude and Lorentz	C) Bloch	D) Einstein
2.Quantum free electron theo	ory was developed by		[]
A) Sommerfeld	B) Drude and Lorentz	C) Bloch	D) Einstein
3.According to quantum free el	ectron theory the expressi	on for electrical conductivity i	s []
A) $\frac{ne^2\tau}{m}$	B) $\frac{ne^2\tau_F}{m}$	C) $\frac{ne^2\tau_F}{m^*}$	D) $\frac{e^2 \tau_F}{nm}$
4. The energy band gap between	een valence band and co	onduction band in a conduct	oris []
A) Zero	B) small	C) large	D) none
5 The energy hand gap betw	een valence hand and co	onduction band in a semicon	ductor is[]
A) Zero	B) small	C) large	D) none
6 The energy hand gap betw	een valence hand and co	onduction hand in a insulator	$r is \begin{bmatrix} 1 \end{bmatrix}$
A) Zero	B) small	C) large	D none
A) Zelo	D) Siliali theory is based on the r	C) large	
7. The classical free electron	D) statistical masher		
A) classical mechanics	B) statistical mechani	cs C) quantum mechanics	D) none
8. The quantum free electron	theory is based on the	principle of	
A) classical mechanics	B) statistical mechani	cs C) quantum mechanics	D) none
9.In classical free electron th	eory, electrons are mov	ing in	
A)any were in the metal	B) outside the metal	C) not moving	D) none
10.In quantum free electron	theory, electrons are mo	oving in	[]
A)a stationary orbital	B) a non-stationary	orbital C) not moving	D) none
11.In Band theory of solids,	electrons are moving in		[]
A) a non-periodic potent	ial B) periodic potentia	l C) not moving	D) none
12. The average distance trav	elled by an electron bet	ween two successive collision	ons in the presence
of applied field is known as			[]
A) Mean free path E	B) Drift velocity C	C) Relaxation time D)	Average velocity
13.Classical free electron the	eory failed to explain		[]
A) Specific heat	of metals B) Mag	netic susceptibility of metals	3
C) Thermionic e	emission D) all t	he above	
14. The number of valence e	lectrons in Si atom is		[]
A) 1	B) 2 C) 3	D) 4	
15.Extrinsic semiconductors	s are divide into	types.	[]
A) 1	B) 2 C) both	A & B D) none	L]
16 The average velocity acqu	uired by an electron is l	known as	[]
A) Mean free path	$\frac{1}{2} Drift velocity \qquad ($	$\mathbf{T} \mathbf{R} = \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R}$	Average velocity
17 If the charge carriers are	electrons the Hall coeff	$\frac{D}{D}$	
A) positivo	P) pagatiya	C zero D nono	L J
A) positive	D) negative		г 1
18.Phosphorous, arsenic and	anumony are	elements.	[$]$
A) pentavaler	it B) trivalent	C) monovalent	D) divalent
19. Electric conduction in a s	semiconductor occurs d	ue to the motion of \mathbf{D}	[]
A) free electro	ons only	B) holes only	
C) both free e	electrons and holes	D) neither electrons nor	holes

QUESTION BANK **2018** 20.Holes are charge carriers in ſ 1 A) intrinsic semiconductors B) ionic solids C) n-type semiconductors D) metals 21. The time taken for the average velocity decays to 1/e of its initial value is known as Γ 1 A) Mean free path B) Drift velocity C) Relaxation time D) Average velocity 22.Silicon is group element. ſ 1 C)Third A) first B)second D)fourth 23. The ratio of diffusion coefficient to mobility of charge carriers is proportional to 1 ſ B) T^2 C) 1/T D) $1/T^2$ A) T 24.At 0k, a pure semiconductor is ſ 1 D) an insulator A) a conductor B) a resistor C) a power source 25.The majority charge carriers of a p-type semiconductors are 1 ſ D) negative ions A) electron B) holes C) positive ions 26. The Fermi level in an n-type semiconductor lies 1 A) near the valence band B) near the conduction band C) exactly at the middle of the energy gap D) none of these 27. The Hall coefficient, $R_{\rm H} =$ ſ 1 A) 1/neB) n/eC) e/nD) en 28.If the Hall coefficient is negative then the semiconductor is ſ 1 A) p-type B) n-type C) intrinsic D) extrinsic 29. At 0 K pure silicon is ſ 1 A) extrinsic semiconductor B) holes C) a superconductor D) an intrinsic semiconductor 30. The majority charge carriers of a n - type semiconductors are 1 E A) electrons B) holes D) negative ions C) positive ions 31. The Fermi level in an p - type semiconductor lies 1 A) near the valence band B) near the conduction band C) exactly at the middle of the energy band D) none of these 32. The diffusion current is proportional to ______ of charge carriers.] ſ A) concentration gradient B) drift velocity D) none of these C) mobility 33.If the Hall coefficient is positive then the semiconductor is [1 B) intrinsic C) n – type D) extrinsic A) p - type34.In intrinsic semiconductor the carrier concentration varies as Γ 1 A) $T^{3/2}$ B) T^2 C) T⁻² D) T 35.The product np varies by changing ſ 1 A) pressure B) temparature C)doping trivalent impurities D) doping pentavalent impurities 36.In intrinsic semiconductor, the electron concentration is equal to ſ 1 A) ion concentration B) hole concentration D) none C)proton concentration 37. The relation between n & p as incase of intrinsic semiconductor is [] B) n > pA) n = pC) n < pD)none 38. The relation between n & p as incase of N-type extrinsic semiconductor is Γ ENGINEERING PHYSICS

				QUESTI	ON BANK	2018	
A) n = p	B) $n > p$	C) n < p	D)non	e			
The relation betweer	n & p as incase	of P-type ext	rinsic semico	onductor is		[]
A) n = p	B) n > p	C) n < p	D)non	ie			
Semiconductors are	divided into	types.				[]
A) 1	B) 2	C)3	D)non	e			
	PHVS	UNI ICS OF NAM	[-V Nomater]	IALS			
	<u></u>						
1. The average spa	cing between nei	ghboring ato	ms in a typic	al crystal is a	bout	[]
A) 50 Pico mete	rs B) 300 Pi	ico meters	C) 2 nano	meters	D) 5 nanor	neters	
2. Who was the first	st to propose the	concept behin	nd nanotechr	nology (atomi	c precision)? []
A) Galileo Galil	ei (1600) B) F	Richard P. Fe	ynman (1959	9)			
C) K. Eric Drex	ler (1977) D) H	Richard Small	ley (1985)				
3. By reducing the	size of a nanoma	terial, the cha	ange in the in	nteratomic sp	acing is	[]
A) Increased			B) Decr	eased			
C) First increase	ed and then decre	ased	D) Kept	constant			
4. 1 nm =						[]
A) 10 ⁻⁹ n	nm I	B) 10 ⁻⁹ cm		C) 10 ⁻⁹ m		D) 10 ⁻⁹	m ²
5. Nanomaterials a	re catalysts becau	use of their en	nhanced	_]]
A) Chemical act	ivity			B) thermal a	ctivity		
C) Mechanical a	ctivity			D) optical a	ctivity		
6. In quantum con	finement effect,	the energy lev	vels of	changes.	•]	1
A) Electrons	B) Atoms	C) N	Iolecules	D) Nanopar	ticles	_	_
7. Who first visual	ised the concept	of nanotechno	ology?	, ,		ſ	1
A) Eric Drexler	1]	B) Richard F	eynman		_	_
C) Norio Tanigu	ıchi	Ι	D) Newton				
8. Quantum dot is	an example of		,			ſ	1
A) 1D nanomate	erial B) 2D) nanomateria	al C) 3D	nanomaterial	D) all	L	
9. For a cubic nanc	particle of side	'a' surface ar	ea to volume	ratio is given	ı by		
A) 3/a	B) 4/a	3	C) 5/a		D) 6/a	ſ	1
10. When the dimer	ision of the nanor	oarticles is of	the order of	de Broglie w	avelength.	or mean	free
path of electrons	s. energy levels o	f electrons ch	ange. This e	ffect is called		1	1
A) Surface area	to volume ratio		B) Qua	ntum confine	ment	L	Ţ
C) CNT			D) Non	e.			
11 For nanomateria	ls the surface ar	ea to volume	ratio is			ſ	1
A) Large	B) Very la	rge	C) Small	D) Ve	erv small	L	1
12 The size range c	f nanomaterials i		C) Sillali	D) ((y sinan	Г	
A) 1 to 1	00 cm B	1 to 100 nm	$(\mathbf{C}) 1 \mathbf{t} \mathbf{c}$	100 mm	D) 1 to	۱ 100 um	
12 Clothe mode up	of nonofibros are		C) I W	100 mm	D) 1 to	100 μm Γ	
Λ Wotor ropell	or nanomores are $\mathbf{D} \setminus \mathbf{W}_{min}$	zla frag) Stragg raci	\mathbf{D}	11 of these	L	
A) water repette	$D = \frac{D}{V} = $	a bull motor	ol in omrehed	Statit D F	tiolog or		
14. In the labrication $\frac{1}{1}$	n or nanoparticle	s, buik inater	ial is crushed	i into nanopai	ucles on _	г	
method.	יי וי ת ו	1			-1 - 1 - 4]	
A) CVD	B) Ball mil	ling C) Plasma arc.	ning D) S	oi-gei metl	100	

				QUES	TION BANK	2018	
15 For a sphere of r	anoparticles of	radius r surf	ace area to vol	ume ratio i	is given hy	ſ	
A) $2/r$	B) 3/r	C) 4/r	D) 5/r		is given by	L	
16. The technique us	sed for the fabri	cation of nan	omaterials			[
A) Ball r	nilling	B) Sol-gel	C) CV	D D)	All of these	L	
17. Gold nanosphere	es of 100 nm ap	pear				[]
A) Blue in colo	r	-	B) Red in colo	or			
C) Violet in col	or		D) Orange in c	color			
18. Fullerene is						[]
A) Carbon mol	ecule with carbo	on atoms arra	nged in a sphe	rical shape	•		
B) Thin film of	polymer (C) Another fo	rm of diamone	d D) C	Graphite sheets	5	
19. Carbon nanotube	es are					[]
A) Copper tube	S		B) Pl	astic tubes			
C) Sheet of gra	ohite rolled into	a tube	D) O	range in co	olor		
20. Diameter of one	carbon atom is			-		[]
A) 0.5 nm	B) 0	.05 nm	C) 0.	15 nm	D) 5 nm		
21. Nanotechnology	is the engineer	ing of functio	nal systems at	the	,	[
A) Atomic scale	B) Molecula	ar scale C	C) Structure lev	vel D)	Conic scale	_	
22. Nanomaterials a	re		,	,		[1
A) Small volum	e materials	B) The ato	ms or molecul	es		-	-
C) Having grain	n size of 1 nm	D) Having	domain size al	bout 100 n	m		
23. Properties of nat	noparticles diffe	r from bulk n	naterials due to	presence	of	[1
A) Less number	of atoms	B) More nu	umber of atom	s		-	-
C) Impurities		D) More nu	umber of atom	s and impu	rities		
24. An electrochrom	nic device is			1		ſ	1
A) Used in sol	ar cells					-	-
B) Display devC) A crystallinD) None of the	vice which displ e mixture above	ays informati	on by changin	g colour w	hen a voltage	is appl	ied
25. The prefix "nand	o" comes from a	a Greek word	meaning			[1
A) Billion	B) Dwarf	C) In	visible	D) Infini	ite	_	_
26. Which of the fol	lowing wave le	ngths for elec	tromagnetic ra	diation (li	ght) is within	the visi	ble
spectrum?	C	C	C			[1
A) 1 nm	B) 100 nm	C) 50	0 nm	D) 1 µm		-	-
27 A quantum dot i	s	,		<i>,</i> ,		ſ	1
A A n object the function of the function A A h	nat changes it n	operties upor	addition or re	emoval of a	a single electro	L NN	J
B) A mathema C) A hole in s	tical operator us	sed in string t	heory, and rep	resented by	y the character		
D) An electron	nagnetic vacuu						
28. In the fabrication	n of nanopartici	es, microcrys	talline structur	es are brok	ten down to na	ano	
crystalline struct	tures in			1.			. 1
						armath	lOC.
A) Chemical var	pour deposition	B) Ball mi	lling C) Plas	sina archin	g D) Sol-g	ei meui	100

QUESTION BANK 2018 A) It is a low temperature process B) The product can be obtained from any form C) It is polished to optical quality D) All of the above 30. The size of red blood cell is ſ] A) 700 nm B) 30 nm D) 1 nm C) 100 nm 31. The size of virus is 1 ſ A) 700 nm B) 30 nm C) 100 nm D) 1 nm 32. Crystal growth is an example of ------ technique 1 ſ B) Top down C) Both A & B A) Bottom up D) None of above 33. Due to quantum confinement, in nanoparticles electronic bands become ------1 ſ A) Wider B) Disappear C) Narrower D) None of above 34. Preparation of nanomaterial by slicing or successive cutting of a bulk material to get nano sized particles L] A) Bottom up B) Top down C) Both A & B D) None of above 35. Quantum well lasers and high quality optical mirrors are fabricated using ---- technique 1 B) Top down C) Both A & B D) None A) Bottom up 36. What is graphene? ſ 1 A) Anew material made from carbon nanotubes B) A one atom thick sheet of carbon C) Thin film made from fullerenes D) A software tool to measure and graphically represent nanoparticles 37. What is "self assembled mono layers"? ſ 1 A) Atoms are molecules that spontaneously form uniform single lawyers B) A type of clothing that gets thicker in response to colder temperatures C) An optical device that puts itself together D) A fuzzy logic circuit 38. Quantum coupling refers to Γ 1 A) Interaction or energy exchange on the quantum level B) The method used by nanoscale life forms for reproduction C) Supra-paramagnetic oscillations within quantum well devices D) None of the above 39. Which of the following products contain nanoscale manufactured parts or materials? 1 ſ A) Sunscreens B) Tennis balls C) Device that read computer hard drives D) All 40. FET stands for ſ 1 B) Field effect transistor A) Field effect thermostat C) Field effect triode D) Function

Prepared by: Mrs.A.Usha Rani.